If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+23x-40=0
a = 3; b = 23; c = -40;
Δ = b2-4ac
Δ = 232-4·3·(-40)
Δ = 1009
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{1009}}{2*3}=\frac{-23-\sqrt{1009}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{1009}}{2*3}=\frac{-23+\sqrt{1009}}{6} $
| 8x-3=18x+18 | | 5x+1=21 | | f/6+31=29 | | 8500(0.95)^x=400x+200 | | k÷2+9=30 | | -8+2r=-2 | | 32=p-14 | | k^2-6k+21=0 | | 3x+11+45=20x-24 | | 2x+4x+3=7–x+10 | | N(p)=100-3p^2;p=4 | | N(p)=100-3p^2 | | M(x)=2^+9x-5 | | 3(x+2)-2=2(x-6) | | 7x+12=3x+28= | | -k+-3=-2 | | 3x+5+6x-37=4x+30 | | 3-(x÷8)=-2 | | 2(x-1)=3x45 | | 1-z=1 | | 0.02x=98 | | 2e+16=4e | | 6+9÷7n=24 | | 19+5x+1=18x-6 | | 3/2x+1+9/34x=9000 | | 15/12x-1/4=1 | | x^2-6x8=0 | | −2+2x=−x+2+x | | 8(0)-y=1 | | 6d+10=11d | | 9x+5=-4+5x+21 | | z-2(-5+4z)=7 |